Aufgabe IV:

Gegeben sind die Funktionen $f(x) = (x+1)^2 - \frac{5}{2}$ und $g(x) = -2 \cdot \left(x - \frac{1}{2}\right)^2 + 2$.

1. Bestimmen Sie die Achsenpunkte von $G_g!$

Hinweis: N_I ist die linke, N_r die rechte Nullstelle von g

2. Bestimmen Sie die Schnittpunkte P und Q von G_f und $G_g!$

Hinweis: x_P < x_q

3. Bestimmen Sie die Gleichung der Geraden a, die Q mit N_I verbindet!

Zwischenergebnis: $a(x) = x + \frac{1}{2}$

- 4. Bestimmen Sie den zweiten Schnittpunkt R von a und Gf!
- 5. Bestimmen Sie die Gleichung der Geraden b, die durch den Scheitelpunkt von G_f und durch N_r geht!
- 6. Bestimmen Sie den zweiten Schnittpunkt T von b und Gf!
- 7. Zeigen Sie: Das Viereck TN_IQN_r ist ein Parallelogramm.
- 8. Durch die Nullstellen von G_g gehen zu a und b senkrechte Geraden. Wo schneiden diese die Parabel G_g zum zweiten Mal?
- 9. Zeichnen Sie die beiden Parabeln und die vier Geraden in ein Koordinatensystem!