Analysis 1, Vorschlag 1, Abi 2000		Ro	hpun	kte
erwartete Lösung	Erläuterungen		II	III
1.a) Für a = 0: D _a = R \ {0} Für a > 0: D _a = R \ {0; a} Für alle Funktionen der Schar gibt es keinen Schnittpunkt mit der y-Achse. Für a=0 reduz.sich d. Funkt.term auf f₀(x)=0. ⇒ alle Punkte der x-Achse außer (0 0) sind Schnittpunkte mit dem Graphen.	Die Aufgabenstellung ist einfach und geübt. Nur die Fallunterschei- dung verlangt etwas Überblick und wird vermutlich von ein paar Schülern übersehen.	1	1	
Für $a > 0$: $\frac{1}{x} - \frac{1}{x-a} = 0 \iff x = x - a$ keine Lsg \implies keine Schnittp. mit d. x-Achse		1		
 1.b) y = 0, d.h. die x-Achse, ist waagerechte Asymptote für x → ∞ Für a = 0 gibt es keine weiteren Asymptoten, da die Definitionslücke behebbar ist. Für a > 0 sind die Definitionslücken Polstellen, d.h. es gibt zwei senkrechte Asymptoten: x = 0 und x = a. 	Erläuterung: wie in 1.a)	1	1	
1.c) $\frac{\text{Für } a = 0}{\text{roton steigend und fallend. Es gibt keine Extrema.}} \\ \text{Für } \frac{a > 0}{x^2}: \\ f_a'(x) = -\frac{1}{x^2} + \frac{1}{(x-a)^2} = \frac{2ax - a^2}{x^2(x-a)^2} \\ f_a'(x) = 0 \implies a(2x-a) = 0 \iff x = \frac{a}{2} \\ \text{Testwert (z.B.): } f_a'(-1) = \frac{-2a - a^2}{1 \cdot (-1-a)^2} < 0 \\ \text{Die Polstellen von } f_a'(x) \text{ sind 2. Ordnung (kein VZW), die Nullstelle ist } \\ \text{1. Ordnung (VZW). Monotonietabelle:} \\ \frac{\ x < 0\ }{\text{Vorz.} f_a'} = \frac{1}{a} - \frac{1}{a^2 - a} = \frac{2}{a} + \frac{2}{a} = \frac{4}{a} \implies \text{Min}(\frac{a}{2} \frac{4}{a}) \\ \text{a = 0: } W_a = \{0\}$	Die Aufgabenstellung ist standard und in Teilen einfach. Folgende Aspekte sind problematisch für die Schüler: 1. Eine Monotonie, die nicht streng monoton ist. 2. Das Rechnen mit dem Parameter, vor allem im Umgang mit Bruchtermen. 3. Das finden eines x-Wertes für einen Testwert, wenn die Nullstelle vom Parameter abhängt. 4. Die Folgerung des Wertebereichs aus den vorherigen Ergebnissen.	1 1 3	1 2	1
a > 0: die x-Achse ist Asymptote, es gibt keine Schnittpkt. mit der x-Achse, bei x=0 und x=a gibt es Polstellen \Rightarrow außerhalb der Polstellen ist $y \in \mathbb{R}^-$. Zwischen den Polstellen liegt ein Min. \Rightarrow W _a = $\mathbb{R} \setminus [0; \frac{4}{a}]$			2	
1.d) Für a = 2: $Min(1 2)$ y $y = 0$	Der Graph für a = 0 ist einfach. Der andere Graph verlangt guten Überblick.			
$x = 0$ G_0 G_0 G_1 G_2 G_2 G_3 G_4 G_4 G_5 G_7 G_8 G_8 G_8 G_9 $G_$		1	4	
2. Für das Minimum gilt: $x = \frac{a}{2} \Rightarrow a = 2 \cdot x$ $y = \frac{4}{a} \Rightarrow y = \frac{4}{2x} = \frac{2}{x}$	Einfach und geübt.	3		